

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR (AUTONOMOUS)

 $Siddharth\ Nagar,\ Narayanavanam\ Road-517583$

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Hydrology &WRE Course & Branch: B.Tech CE

(18CE0117) **Regulation:** R18

UNIT –I INTRODUCTION TO HYDROLOGY & HYDROGRAPH ANALYSIS

1	a Wha	t is the n	nean by	surface r	un-off?						[L1][CO1]	[2M]
	b Wha	t is the n	nean by	sub surfa	ce run-c	off?					[L1][CO1]	[2M]
	c What is the mean by base flow?						[L1][CO1]	[2M]				
	d Illustrate the assumptions of rational method?						[L2][CO1]	[2M]				
	e Writ	e any 31	imitatio	ns of rati	onal met	thod?					[L1][CO1]	[2M]
2	Explain	with the	help of	a diagrar	n the hy	drologic	al cycle	with con	ponents	?	[L2][CO1]	[10M]
3				underst			cipitatio	n?			[L2][CO1]	[2M]
	(b) Explain types and forms of precipitation?						[L1][CO1]	[8M]				
4	Explain										[L2][CO1]	[10M]
5			y Infiltı	ration? E	Explain 1	the facto	ors whic	h affect	the rate	of	[L1][CO1]	[10M]
	infiltrati											
6	Explain										[L2][CO1]	[10M]
7	` '						_	infiltron	neter?		[L2][CO1]	[4M]
	, ,			y about 9							[L2][CO1]	[6M]
8	(a) Compute the weekly evaporation from a reservoir using the water-							[L3][CO1]	[4M]			
	budget method from the following data recorded during the week. Average inflow into the reservoir is 32.5m ³ /s, average out flow from the											
	reservoir is 40.2m3/s, average water spread area is 15.8km², storage at											
	the beginning of the week is 9180ha-m and storage at the end of the							t the				
	week is 8360ha-m.									II 11[CO1]	[CM]	
	(b) What do you mean by Hydrograph and Unit hydrograph? Explain the construction and limitations of unit hydrograph.								[L1][CO1]	[6M]		
9 10										. 6 h	[L3][CO1]	[10M]
10												
	intervals of rainfall magnitude of 3,5 and 4 cm respectively. Assuming a Φ-											
	index of 0.23cm/hr and a base flow of 30m ³ /s. Determine the resulting											
	hydrograph							[L4][CO1]	[10M]			
	Time	0	6	12	18	24	30	36	42	48		
	In		O	12		-				10		
	hour											
	Ordin	0	250	600	800	700	600	450	320	200		
	ate of											
	6-hr											
	U.H(
	m^3/s)											
11	Write the method to measure the evaporation? Explain any one method.						[L2][CO1]	[10M]				

UNIT –II GROUND WATER& IRRIGATION

1	a Recall about an Aquifer?	[L2][CO1]	[2M]
	b Illustrate about an Aquiclude?	[L2][CO1]	[2M]
	c Write about an Aquifuge?	[L2][CO1]	[2M]
	d Explain in detail about porosity with sketch?	[L2][CO1]	[2M]
	e What is meant by specific retension?	[L1][CO1]	[2M]
2	Explain in detail about the different types of aquifers with neat sketch.	[L1][CO1]	[10M]
3	(a) Explain ground water well and basic assumptions?	[L2][CO1]	[5M]
	(b) In certain alluvial basin of 120km ² , 100Mm ³ of ground water was pumped in a	[L3][CO1]	[5M]
	year and the ground water table dropped by 5m during the year. Assuming no		
	replenishment, estimate the specific yield of the aquifer. If the specific		
	retention is 12%, what is the porosity of the soil?		
4	(a) What do you understand from Darcy's law, hydraulic gradient, seepage	[L2][CO1]	[5 M]
	velocity.	[L2][CO1]	[5M]
	(b) Enumerate about specific yield and elaborate the factors contribute the specific		
	yield.		
5	(a) With a neat sketch explain Dupuit's theory for confined aquifer?	[L1][CO1]	[7M]
	(b) An undisturbed rock sample has an over dry weight of 1305gm. When it is	[L2][CO1]	[3M]
	completely saturated with kerosene it weighed 1436gm. The saturated sample,		
	when immersed in kerosene displaced 605gm of kerosene. What is the porosity		
	of the sample?		
6	Explain the necessity and importance of Irrigation?	[L2][CO2]	[10M]
7	List out the advantages of Irrigation in detail.	[L1][CO2]	[10M]
8	(a) Briefly discuss in detail with flow chart about the types of irrigation.	[L1][CO2]	[6 M]
	(b) Define duty and delta of irrigation?	[L2][CO2]	[4M]
9	Explain in detail about the methods of application of irrigation water.	[L1][CO2]	[10M]
10	(a) Enumerate in detail about factor affecting duty of irrigation water.	[L1][CO2]	[5 M]
	(b) Explain in detail about the methods of improving duty	[L2][CO2]	[5M]
11	The left branch canal carrying a discharge of 20cumecs has a Culturable	[L3][CO2]	[10 M]
	commended area of 20000 hectares? The intensity of rabi crop is 80% and base		
	period is 120 days. The right branch canal carrying a discharge of 8 cumecs has a		
	Culturable commanded area of 12000 hectares, intensity of irrigation of rabi crop		
	is 50% and base period is 120 days. Compare the efficiencies of the two canal		
	systems.		

UNIT –III WATER REQUIREMENT OF CROPS & CANAL REGULATION WORKS

1	a What is kor period?	[L1][CO3]	[2M]
	b Explain the terms outlet factor.	[L2][CO3]	[2M]
	c Illustrate the terms crop overlapping allowance.	[L2][CO3]	[2M]
	d What is water requirement of crop?	[L1][CO3]	[2M]
	e What is kor depth?	[L1][CO3]	[2M]
2	Explain any five irrigation efficiencies	[L1][CO3]	[10M]
3	A water course commands an irrigation area 1000 hectares. The intensity of	[L3][CO3]	[10M]
	irrigation of rice in this area is 70%. The transplantation of rice crop takes 15 days		
	and during the transplantation period the total depth of water required by crop on		
	field is 500mm. during transplantation period, the useful rainwater falling on field		
	is 120mm. Find during transplantation, at head of field and also at head of water		
	course. Also calculate the discharge required in water course.		
4	(a) Illustrate about G.C.A. and C.C.A.	[L2][CO3]	[6 M]
	(b) Briefly detailed about Culturable cultivated area and Culturable uncultivated	[L1][CO3]	[4 M]
	area?		
5	A field of 4 hectares has an average root zone depth of 1.0m, a field capacity	[L3][CO3]	[10M]
	of 18%(both by weight). Assume that it's desirable to irrigation when 60% of		
	available moisture has been extracted. The field is irrigated by a sprinkler		
	system which delivers 300m3/hour over a period of 12 hours. What is water		
	application efficiency? Density of soil is 1400kg/m3.		
6	Explain with neat sketch about the types of fall in dam irrigation?	[L2][CO4]	[10M]
7	What is roughening device in canal? And also explain its varieties?	[L1][CO4]	[10M]
8	Write the design step by step procedure for sarada type falls with formulas?	[L3][CO4]	[10M]
9	Design a Sarada type fall for the following set of data. Full Supply Discharge-	[L4][CO4]	[10M]
	14 m3/s, Bed width- 18 m, Full Supply Depth (FSD) - 1.5 m, Full Supply		
	Level (U/S) -101.00 m, Full Supply Level (D/S) -100.00 m, U/S Bed Level -		
	99.5 m, D/S Bed Level- 98.5m, Natural Surface Level-99.5 m (D/S), Bligh's		
	Coefficient (c) is -8.		
10	(a) Write the function of cross regulators and distributor head regulators?	[L1][CO4]	[6 M]
	(b) Write the criteria to design the crest level and length of downstream floor in	[L3][CO4]	[4 M]
	cross regulator design.		
11	Demonstrate about consumptive use of water? Write in detail about factors	[L2][CO3]	[10M]
	affecting consumptive use of water.		
			

Course Code: 18CE0117

UNIT –IV CROSS DRAINAGE WORKS& RESERVOIR PLANNING

1	a List the purpose of constructing reservoirs	[L1][CO5]	[2M]
	b What is cross drainage work	[L1][CO5]	[2M]
	c Write about the types of investigation carried for reservoir planning.	[L1][CO5]	[2M]
	d What is flood routing	[L1][CO5]	[2M]
	e Illustrate about safe yield	[L2][CO5]	[2M]
2	Elaborate about cross drainage work and detailed its types.	[L2][CO5]	[10M]
3	(a) Illustrative the criteria's to select the suitable type of cross drainage work.	[L2][CO5]	[8M]
	(b) Write the three classifications of aqueducts?	[L1][CO5]	[2M]
4	Describe in detail various investigation to be carried for reservoir planning.	[L3][CO5]	[10M]
5	What are the various factors on which the selection of the site of a reservoir depends?	[L2][CO5]	[10M]
6	Explain the different types of zones of storages in the reservoir with the help of neat	[L1][CO5]	[10M]
	sketch		
7	(a) Explain the mass inflow curve and demand curve.	[L2][CO5]	[5M]
	(b) Write a procedure for calculation of life of a reservoir.	[L2][CO5]	[5M]
8	Write the calculation of reservoir capacity for a specified yield from mass inflow	[L3][CO5]	[10M]
	curve.		
9	What is flood routing and explain about method of flood routing by graphical method.	[L1][CO5]	[10M]
10	Explain various types of reservoirs?	[L1][CO5]	[10M]
11	(a) Explain the term life of reservoir in detail.	[L2][CO5]	[5M]
	(b) Write the calculation of determination of safe yield from reservoir.	[L2][CO5]	[5M]

Course Code: 18CE0117

UNIT –V DAMS& GRAVITY DAMS

1	a Classify dams according to hydraulic design with example.	[L1][CO6]	[2M]
	b What is diversion dam.	[L1][CO6]	[2M]
	c Elaborate arch dam with sketch.	[L2][CO6]	[2M]
	d Write the modes of failure of gravity dam.	[L2][CO6]	[2M]
	e Write the combination of loading for design of gravity dam.	[L2][CO6]	[2M]
2	Classify all the various classifications of dams according to use in detail with	[L2][CO6]	[10M]
	sketches.		
3	(a) Discuss in brief about the merits and demerits of any two types of dam.	[L2][CO6]	[7M]
	(b) What do you understand by gravity dam?	[L2][CO6]	[3M]
4	Discuss the physical factors that govern selection of type of dam.	[L2][CO6]	[10M]
5	What are the factors to be considered for selection of site for a dam?	[L2][CO6]	[10M]
6	(a) Explain with sketch about galleries in gravity dam?	[L1][CO6]	[2M]
	(b) Write briefly on various forces that act on a gravity dam.	[L2][CO6]	[8M]
7	Discuss in detail various modes of failure of a gravity dam.	[L2][CO6]	[10M]
8	Explain the stability analysis for dam carried out by analytical method.	[L3][CO6]	[10M]
9	Draw and explain the elementary profile of a gravity dam.	[L2][CO6]	[10M]
10	A masonry dam 6 m high and 1.5 m wide at the top and 4.5 m wide at the bottom,	[L3][CO6]	[10M]
	with vertical face. Determine the normal stresses at the toe and heel for reservoir		
	empty and reservoir full conditions. Take ρ =2.4 and c=1.		
11	Discuss about the limiting height of a gravity dam.	[L1][CO6]	[10M]

Prepared by:

Mr. N. ELAKKIYARAJAN Assistant Professor/CIVIL